6 research outputs found

    Effects of Postnatal Stress on the Development of Type 1 Diabetes in Bank Voles (Clethrionomys glareolus)

    Get PDF
    Wild bank voles (Clethrionomys glareolus) kept in the laboratory under barren housing conditions develop high incidences of type 1 diabetes mellitus due to beta cell– specific lysis in association with the appearance of GAD65, IA-2, and insulin autoantibodies. Wild-caught and immediately analyzed voles show no histological signs of diabetes, and the disease may therefore be induced by circumstances related to the housing of the animals in captivity. We tested the possibility that postnatal stress by either maternal separation or water immersion at different intervals would induce diabetes in adult bank voles. We found that low-frequent stress during the first 21 days of life increases, whereas high-frequent stress markedly reduces, the incidence of type 1 diabetes in adulthood. These results differentiate the role of early-experienced stress on subsequent type 1 diabetes development and emphasize that the bank vole may serve as a useful new animal model for the disease

    Development of Type 1 Diabetes in Wild Bank Voles Associated With Islet Autoantibodies and the Novel Ljungan Virus

    Get PDF
    Wild bank voles (Clethrionomys glareolus) may develop diabetes in laboratory captivity. The aim of this study was to test whether bank voles develop type 1 diabetes in association with Ljungan virus. Two groups of bank voles were analyzed for diabetes, pancreas histology, autoantibodies to glutamic acid decarboxylase (GAD65), IA-2, and insulin by standardized radioligand-binding assays as well as antibodies to in vitro transcribed and translated Ljungan virus antigens. Group A represented 101 trapped bank voles, which were screened for diabetes when euthanized within 24 hours of capture. Group B represented 67 bank voles, which were trapped and kept in the laboratory for 1 month before being euthanized. Group A bank voles did not have diabetes. Bank voles in group B (22/67; 33%) developed diabetes due to specific lysis of pancreatic islet beta cells. Compared to nondiabetic group B bank voles, diabetic animals had increased levels of GAD65 (P < .0001), IA-2 (P < .0001), and insulin (P = .03) autoantibodies. Affected islets stained positive for Ljungan virus, a novel picorna virus isolated from bank voles. Ljungan virus inoculation of nondiabetic wild bank voles induced beta-cell lysis. Compared to group A bank voles, Ljungan virus antibodies were increased in both nondiabetic (P < .0001) and diabetic (P = .0015) group B bank voles. Levels of Ljungan virus antibodies were also increased in young age at onset of newly diagnosed type 1 diabetes in children (P < .01). These findings support the hypothesis that the development of type 1 diabetes in captured wild bank voles is associated with Ljungan virus. It is speculated that bank voles may have a possible zoonotic role as a reservoir and vector for virus that may contribute to the incidence of type 1 diabetes in humans

    Barred Galaxies in the Abell 901/2 Supercluster with STAGES

    Full text link
    We present a study of bar and host disk evolution in a dense cluster environment, based on a sample of ~800 bright (MV <= -18) galaxies in the Abell 901/2 supercluster at z~0.165. We use HST ACS F606W imaging from the STAGES survey, and data from Spitzer, XMM-Newton, and COMBO-17. We identify and characterize bars through ellipse-fitting, and other morphological features through visual classification. (1) We explore three commonly used methods for selecting disk galaxies. We find 625, 485, and 353 disk galaxies, respectively, via visual classification, a single component S'ersic cut (n <= 2.5), and a blue-cloud cut. In cluster environments, the latter two methods miss 31% and 51%, respectively, of visually-identified disks. (2) For moderately inclined disks, the three methods of disk selection yield a similar global optical bar fraction (f_bar-opt) of 34% +10%/-3%, 31% +10%/-3%, and 30% +10%/-3%, respectively. (3) f_bar-opt rises in brighter galaxies and those which appear to have no significant bulge component. Within a given absolute magnitude bin, f_bar-opt is higher in visually-selected disk galaxies that have no bulge as opposed to those with bulges. For a given morphological class, f_bar-opt rises at higher luminosities. (4) For bright early-types, as well as faint late-type systems with no evident bulge, the optical bar fraction in the Abell 901/2 clusters is comparable within a factor of 1.1 to 1.4 to that of field galaxies at lower redshifts (5) Between the core and the virial radius of the cluster at intermediate environmental densities, the optical bar fraction does not appear to depend strongly on the local environment density and varies at most by a factor of ~1.3. We discuss the implications of our results for the evolution of bars and disks in dense environments.Comment: accepted for publication in ApJ, abstract abridged, for high resolution figures see http://www.as.utexas.edu/~marinova/STAGES/STAGES_bars.pd
    corecore